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In this paper we propose a model to relate Eulerian spatial and temporal velocity
autocorrelations in homogeneous, isotropic and stationary turbulence. We model the
decorrelation as the eddies of various scales becoming decorrelated. This enables us
to connect the spatial and temporal separations required for a certain decorrelation
through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation,
we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads
to a spatial separation from the temporal correlation and a temporal separation
from the spatial correlation, at any given value of the correlation relating the
two correlations. We test the model using experimental data from a stationary
axisymmetric turbulent flow with homogeneity along the axis.

1. Introduction
In turbulent flows, usually two types of correlations are used: Lagrangian, where a

correlation is calculated following a fluid particle, and Eulerian, where the correlations
are in general with spatial and temporal separations. Thus there could be Eulerian
spatial, Eulerian temporal and Eulerian spatio-temporal correlations. Till recently,
correlation measurements were mostly made using probes at two spatial points. Favre
and co workers (Favre 1965; Favre, Gaviglio & Dumas 1957, 1958), report extensive
space–time correlations using hot wires at two locations. In the case of time-periodic
flows, spatial structures were inferred using phase averaging (Zaman & Hussain
1981; LeBoeuf & Mehta 1995). Now, with particle image velocimetry (PIV) and
direct numerical simulation (DNS) it is possible to get spatial correlations involving
many spatial points.

DNS of isotropic turbulence has been extensively used to obtain the Lagrangian
statistics (see for e.g. Riley & Patterson 1974; Yeung & Pope 1989; Squires & Eaton
1989; Yeung 2001). A survey of the Lagrangian studies of turbulence with an emphasis
on DNS is in Yeung (2002). Fewer Eulerian statistics are reported in the context of
isotropic turbulence.

In the absence of spatial data, spatial statistics have been widely inferred from
single-point temporal measurements using the ‘frozen’ turbulence hypothesis of
Taylor (1938). The hypothesis assumes that the timescales of the turbulence are
large compared to the advection time in the spatial extent considered; then
ψ(x, τ ) = ψ(x − Uτ, 0) for some quantity ψ; U is the advection velocity. Possible
causes for errors when applying the hypothesis are: temporal evolution of the flow
field, spatial non-uniformity of the convection velocity, anisotropy produced by shear,
and aliasing due to unsteadiness of the convection velocity. These errors and their
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corrections are described in Lin (1953), Lumley (1965), Heskestad (1965) and Gledzer
(1997). Corrections to the velocity spectra due to the hypothesis are also detailed in
Fisher & Davies (1964) and Wyngaard & Clifford (1977). The hypothesis is found
to be valid in general for velocity statistics as well as temperature statistics away
from the walls and at low turbulence intensities (Antonia, Phan-Thien & Chambers
1980; Browne, Antonia & Rajagopalan 1983; Piomelli, Balint & Wallace 1989). The
application of the hypothesis in the case of interacting coherent structures yields poor
results (Zaman & Hussain 1981; LeBoeuf & Mehta 1995). The results are also poor
in the case of three dimensional scalar structures (Dahm & Southerland 1997). A
mean flow is present in all these studies.

The extension of the Taylor hypothesis to flows without a mean flow is called the
random Taylor hypothesis which is concerned with the sweeping of the turbulence
field past a fixed observer by the larger eddies (Tennekes 1975; Yeung & Pope
1989; Chen & Kraichnan 1989; Brouwers 2004; Yeung & Sawford 2002). It is
required that the large and small scales of turbulence are separated and that local
and the convective accelerations of turbulence be anti-aligned, leading to negligible
Lagrangian acceleration, and hence causing the advection of a ‘frozen’ field (Tennekes
1975; Tsinober, Vedula & Yeung 2001; Brouwers 2004). Use has been made of this
hypothesis to relate Eulerian spatial and temporal spectra (Tennekes 1975; Nelkin &
Tabor 1990) and to explain the spectral broadening of Eulerian time spectra at high
frequencies. Pinsky, Khain & Tsinober (2000) study the various contributions to the
acceleration and show that the use of the hypothesis is questionable for low values of
the Reynolds numbers. Using the random Taylor hypothesis, Brouwers (2004) gives
a theoretical expression to relate Eulerian spatial and temporal structure functions.
The relation is valid for small times.

In this paper we propose a model to relate spatial and temporal Eulerian two-
point correlations in stationary, isotropic and homogeneous turbulence. The model
is applicable in the absence of mean flow but includes the effects of sweeping by the
large eddies. It would modify the application of the Taylor hypothesis in the case of
turbulence with mean flow. We test the model using measurements in a quasi-steady
turbulent flow with zero mean, driven purely by buoyancy and which is homogeneous
in one direction (Cholemari 2004).

2. Model
The model is concerned with the relation between Eulerian two-point spatial and

Eulerian temporal velocity correlations in homogeneous, isotropic and stationary
turbulence, with zero mean velocity (〈ui〉 =0). In such a flow the same processes
produce both spatial and temporal correlations. We look at these processes as resulting
in eddies with similar spatial and temporal distributions. These eddies have a range
of scales, from the largest to the viscous or Kolmogorov length scale. The larger
eddies occur less often compared to the smaller eddies. Also, as can be seen from the
velocity spectrum, the velocities of the various eddy scales are different. The velocity
correlation functions are the result of all this information: the eddy scale, the velocity
at that scale and the frequency of occurrence of the eddies at that scale. Although
simplistic, this perspective serves as a starting point for establishing a model for
relating spatial and temporal correlations.

Consider the Eulerian two-point spatial autocorrelation

CS
uiui

(rj , t) =
〈ui(x, t)ui(x + rj , t)〉

u′
iu

′
i

,
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Figure 1. Schematic of eddy decorrelation. The decorrelation with spatial separation r can be
associated with an eddy scale. Only eddies of size larger than r contribute to the correlation.
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Figure 2. Schematic of the model: (a) temporal to spatial and (b) spatial to temporal.

where ui is a velocity component, u′
i is its RMS value, and rj is the separation in

the j -direction. The correlation function is equal to 1 for rj = 0 and reduces in value
with increasing rj . The decorrelation with spatial separation can be associated with
an eddy scale. At small separations, the velocity correlation will have a contribution
from the larger eddies, but not from the smaller (� < rj ) eddies; here � refers to the
eddy scale. With increasing separation more and more eddies stop contributing to the
correlation. Another way to look at this would be as the decorrelation between the
smallest eddies (corresponding to the origin of the correlation) and the progressively
larger eddies (corresponding to the increasing separation), in which the smaller eddies
are embedded. This is illustrated in figure 1 where four eddy sizes L1 to L4 are shown,
L1 being the largest; let their sizes be rL1, rL2 etc. Consider a separation r > rL3, rL4

but r < rL2, rL1. Consider the reference point at a. Eddies L1, L2, L3 and L4 contribute
to the correlation, while L′

3 and L′
4, being smaller than r , do not.

The Eulerian temporal autocorrelation,

CT
uiui

(τ ) =
〈ui(x, t)ui(x, t + τ )〉

u′
iu

′
i

similarly starts with value 1 at zero temporal separation (τ ) and reduces with
increasing τ . As τ increases, progressively larger eddies are swept away from the
reference point, causing the decorrelation. We can relate the decorrelation with
separation time to the decorrelation between the smallest eddies at initial times to
larger eddies at later times. This relates the eddy scale to the temporal separation τ

and decorrelation. The implicit assumption in the model is that each eddy makes a
certain contribution, which is constant within the eddy, to the correlation and this
loosely defines the eddy in the sense of the velocity correlation functions.

Our aim in this paper is to propose a model that will give CS
uiui

(ri) given CT
uiui

(τ ),
and give CT

uiui
(τ ) given CS

uiui
(ri), i.e. relate the longitudinal spatial correlations to the

temporal correlation and vice versa. We obtain the spatial separation S for a temporal
separation τ such that CS

uiui
(S) = CT

uiui
(τ ) and vice versa (figure 2).
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We need to track the decorrelation to relate the eddy scale (and the spatial
separation) to the temporal separation. As mentioned earlier, with increasing time of
separation τ , progressively larger eddies, of scale �(τ ), stop contributing to the
correlation. To see how �(τ ) changes with τ , we note that, at τ , some of
the motions at scales �(τ ) and larger contribute to the correlation while none of the
smaller scales contribute. In addition, these motions which are correlated result in the
temporal and spatial correlations u′2CT

uu(τ ) and u′2CS
uu(�(τ )). Since motions at �(τ )

and beyond are correlated while those below �(τ ) are uncorrelated and the scale
�(τ ) has an effective velocity u′

√
CS

uu(�(τ )) = u′
√

CT
uu(τ ), decorrelation proceeds at

u′
√

CS
uu(�(τ )) = u′

√
CT

uu(τ ).
Additional information can be obtained by reasoning slightly differently. We

consider the motion of a hypothetical particle under the action of only the correlated
part of the eddies. At the smallest eddy scale, the sweeping action of the larger eddies
plus the inherent velocity at the smallest eddies together contribute to the motion.
Looking at the spatial correlation function, the effective velocity of the correlated
motions, with which the hypothetical displacement takes place, is u′

√
CS

uu(r = 0) = u′.
Also, these displacements are related to the longitudinal correlation function and
not the transverse correlation function. One can visualize this by choosing an origin
and a direction at random and seeing that the longitudinal displacements along that
direction – more likely away from the origin as the correlation function is decreasing
away from the origin–add up, and transverse displacements, which are equally likely
in all the directions in the plane normal to the chosen direction, cancel out. And as
the choice of the direction is arbitrary, the progress of the decorrelation is spherical,
as expected because of isotropy.

At a later time, when the hypothetical particle is at a distance � away from
the initial location, it is under the action of eddies of size > �. The corresponding
spatial separation is � and the correlation would have dropped down to CS

uu(�). The
velocity arising out of the correlated part of the eddies with which the hypothetical
displacement takes place is u′

√
CS

uu(�). Thus, using the decorrelation information
from the spatial longitudinal correlation function, one obtains a ‘sampled’ velocity
field, u′

√
CS

uu(�). The time that is an integrated effect of this velocity and the eddy
scale corresponds to the separation time in the temporal correlation where the eddy
decorrelation is associated with the separation time through the eddy scale. And thus
we relate the spatial and temporal correlations.

The inverse of this process would be to obtain the spatial correlation function
from the temporal correlation function. To obtain the spatial scale of the eddies, we
use the decorrelation information from the temporal correlation function to obtain a
sampled velocity field, u′

√
CT

uu(τ ). This velocity field, along with the associated time of
decorrelation, is used to obtain the lengthscale of decorrelation, and thus the spatial
separation.

Since the eddy scale information in temporal correlation comes from the
longitudinal correlation function, when we consider the correspondence of the
temporal correlation and transverse spatial correlation, the factors that contribute to
the correlation – the eddy scale, velocity at the eddy scale, frequency of occurrence
of the eddies – cannot be linked consistently. Thus the extension of these arguments
to the transverse correlations would yield poorer results compared to the longitudinal
case.

In addition, not all the motions of an eddy contribute to the correlations; for
example, rigid body rotation does not contribute to the longitudinal correlation.
However, this is equally true for the spatial and temporal correlations. These are the
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uncorrelated motions and would not be used in the model to construct the sampled
velocity field.

In non-isotropic turbulence, the spatial decorrelation would be different in different
directions and hence the contributions of the transverse velocities to decorrelation
would need to be accounted for. The present model cannot do this. Inhomogeneity
would bring about this situation as well, causing anisotropy. If the flow is not
stationary, the way in which the decorrelation is related to the eddy size and temporal
separation would change with time of separation, causing inhomogeneity in space.
However in stationary axisymmetric flows with homogeneity in the axial direction,
when we consider the longitudinal correlation along the axis, the arguments leading
to the model (transverse contributions to eddy-decorrelation cancel out, longitudinal
correlation determines eddy-decorrelation) are seen to be valid. In the experiments
considered to test the model we have such a case and the model performs well.

We next describe the implementation of the physical arguments detailed above.

2.1. Spatial from temporal

Consider the two-point spatial velocity correlation CS
uiui

(ri) and the temporal

correlation CT
uiui

(τ ). We would like to relate the two as

CS
uiui

(Si(τ )) = CT
uiui

(τ ); (2.1)

where the correlated displacement Si(τ ) is the spatial separation ri of the spatial
correlation function CS

uiui
(ri), such that the correlation equals the temporal correlation

at that time, CT
uiui

(τ ). The velocity uT
d effects the displacement Si(τ ).

Si(τ ) =

∫ τ

0

uT
d (t) dt. (2.2)

Further implementation requires the modelling of uT
d .

Consider CT
ww(τ ) for example. We propose the following model for the velocity uT

d :

(
uT

d (τ )
)2

= u2
s CT

uiui
(τ ) = w′2CT

ww(τ ), (2.3)

where u2
s is a scaling velocity that depends on the correlation considered. We take

us = w′ for CT
ww(τ ). The simplest model would have been to take uT

d = w′, but
in that case the effect of the decorrelation of the smaller eddies with increasing
τ is not modelled. This attenuation is given by CT

ww(τ ). The sampled velocity
w′2CT

ww(τ ) is homogeneous, but depends on τ . The displacement Sz(τ ) brings the
spatial dependence associated with timescale τ into the homogeneous temporal
correlation. Sz(τ ) and the corresponding decorrelation give the spatial correlation
CS

ww(rz). Equations (2.1), (2.2) and (2.3) together constitute the model. This process
is schematically shown in figure 2(a).

We note that in the case of temporal velocity correlations, there is only one
set of directions, those corresponding to the velocities. Thus one cannot obtain
transverse spatial correlations from the temporal correlations, which require two sets
of directions. One can obtain only the longitudinal spatial velocity correlations from
temporal velocity correlations.

Further, on differentiating (2.1) with τ and using the chain rule, we obtain

�S
�τ

� dSi(τ )

dτ
=

dCT
uiui

(τ )/dτ

dCS
uiui

(Si(τ ))/dSi(τ )
= uT

d (τ ) = u′
√

CT
uiui

(τ ), (2.4)
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where the last two equalities follow on differentiating (2.2) and from (2.3) respectively.
Equation (2.4) provides another way to test the model when both the spatial and
temporal correlations are known.

2.2. Temporal from spatial

We need to obtain the temporal correlation given the spatial correlation.

CT
uiui

(τ (ri)) = CS
uiui

(ri) (2.5)

with τ (ri) being the correlated time, analogous to Si(τ ) in equation (2.2):

τ (ri) =

∫ ri

0

dr ′
i

uS
d

. (2.6)

Further implementation requires the modelling of the velocity uS
d . When we consider

two-point spatial velocity correlations, we have two sets of directions available,
corresponding to the coordinates and the velocities respectively and thus we have
both transverse and longitudinal velocity correlations. As discussed earlier, only the
longitudinal velocity correlation is responsible for eddy decorrelation and hence only
that should be considered in constructing the sampled RMS velocity field. We propose
the following model to calculate uS

d :(
uS

d (rz)
)2

= w′2CS
ww(rz) (2.7)

with the scaling velocity, us = w′.
The time τ (rz) brings in the temporal dependence associated with lengthscale rz

in the stationary spatial correlation: τ (rz) and the associated decorrelation give the
temporal correlation CT

ww(τ ). Equations (2.5), (2.6) and (2.7) constitute the model for
the longitudinal velocity correlations, schematically shown in figure 2(b).

To extend the model to the transverse correlation CS
ww(rx), we take the sampled

velocity field in space to be
(
uS

d (rx)
)2

= w′2CS
ww(rx) (2.8)

with the scaling velocity, us = w′, analogous to the longitudinal case (equation (2.7)).
Equations (2.5), (2.6) and (2.8) constitute the model for the transverse velocity

correlations.
In this section we have used rz and w′ to denote the longitudinal direction and the

velocity scale of isotropic turbulence. This is in anticipation of the application of the
model to non-isotropic turbulence discussed next.

3. Results
We test the model using two-dimensional PIV measurements of pure buoyancy-

driven turbulence in a vertical pipe (Cholemari 2004). The flow is driven by density
difference �ρ across the ends of a circular pipe of length L and diameter d . The
density difference is created using brine and water. There is no mean flow. The
turbulence is axisymmetric. An axially homogeneous region exists in the middle of
the pipe. The turbulence is not homogeneous in the lateral direction.

Typically, the density difference varies from 10 kg m−3 to about 2 kgm−3. The dimen-
sions of the pipe are d = 50 mm and L= 45 cm. The Rayleigh number g(�ρ/ρL)d4/να

is of the order of 108. The Reynolds number based on Taylor microscale is about 100.
The measurements are made in the middle of the pipe, in the axially homogeneous
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Figure 3. Temporal correlation from spatial correlations of velocity: (a) CT
ww(τ ) from CS

ww;
(b) CT

uu(τ ) from CS
uu; z is the homogeneous direction. The solid lines are the measured temporal

correlations.

region, in a plane passing through the pipe axis. The data consisting 270 velocity
‘frames’ span about ten minutes of the experiment.

Figure 3 gives the temporal correlations calculated from the spatial correlations of
axial and lateral velocities, in the axial (z) and lateral (x) directions. Equations (2.5)–
(2.8) are used. As described in § 2.2, two choices exist for the spatial correlation in each
case; the results of both choices are shown in the figure. In figure 3(a) the measured
temporal correlation of the axial velocity, CT

ww(τ ) is plotted along with the model
predictions considering the spatial correlations in the axial (CS

ww(rz)) and in the lateral
directions(CS

ww(rx)). The agreement with the model results is very good when CS
ww(rz)

is used and poor when CS
ww(rx) is used. The former is a longitudinal correlation in

the homogeneous axial direction, whereas the latter is a transverse correlation in
the non-homogeneous direction. When the lateral velocity correlations CT

uu(τ ) are
considered (figure 3b), it is seen that the predictions from both the lateral (CS

uu(rx))
and the axial (CS

uu(rz)) directions are of about the same quality. In the experiments, the
spatial correlation of the lateral velocity is nearly isotropic (spatial correlation maps
were nearly circular). The choice of the direction of the correlation thus becomes
less important. The model results are best when the longitudinal correlations in the
homogeneous axial direction are considered, as expected.

Figures 4(a) and 4(b) give the model results for the case when the spatial correlation
is predicted from the temporal correlation. Equations (2.1) to (2.3) are used in the
calculation. As explained in § 2.1, only the longitudinal correlation can be predicted
in this case. Figure 4(a) gives the results of the predictions for the axial velocity
correlations. The predictions are good. In the case of the lateral velocity correlations
(figure 4b), the predictions are quite poor. Again, the model works best in the axial
direction.

Figures 5(a) and 5(b) give the results of the model predictions for the cases where the
transverse velocity correlations CS

ww(rx) and CS
uu(rz) are used to predict the temporal

correlation. The scaling velocity according to the model corresponds to the velocity
considered for the correlation, w′ and u′ respectively in the two cases. The effect of
the alternative choice based on the direction, i.e. u′ and w′ respectively, is also shown
in the figures. In figure 5(a), with the correlation function in the non-homogeneous
direction, CS

ww(rx), the model prediction shows poor agreement with the measured
temporal correlation. The alternative choice of the scaling velocity u′ does slightly
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Figure 5. Temporal correlation from transverse spatial correlations. The solid lines are the
measured temporal correlations. (a) Measured CT

ww(τ ) compared with the model us = w′

(labelled CS
ww(rx)) and with us = u′ (labelled CS

ww(rx), alt). (b) Measured CT
uu(τ ) compared with

the model us = u′ (labelled CS
uu(rz)) and with us = w′ (labelled CS

uu(rz), alt).

better, but this may not be significant as the model itself is not really applicable in the
non-homogeneous transverse direction. In figure 5(b), with the correlation function
in the homogeneous direction, CS

uu(rz), the choice in the model, u′ is slightly better
compared to the alternative choice of w′. The difference is slight as the maps of
constant CS

uu are nearly circular.
Another option is to handle the displacement through the longitudinal correlation,

for exmaple, in the case of CS
ww(rx) use u′

√
CS

uu(rx) to calculate the correlated time,
i.e. treat the cross-correlation as one would handle the correlation of a passive scalar.
But as mentioned earlier, we cannot link all the aspects of the information contained
in the correlation consistently. This approach gave results which lie in between the
two cases presented in figure 5(a), for example.

Figure 6 gives the results for the case when alternative models for the sampled
velocities uS

d and uT
d are considered. Figure 6(a) is for theprediction of the temporal
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(model, ns). (a) Temporal (CT
ww(τ )) from spatial (CS

ww(rz)) and (b) spatial (CS
ww(rz)) from

temporal (CT
ww(τ )). The solid lines are the measured correlations.

correlation from the spatial correlation, and figure 6(b) is for the spatial from temporal
case. Only the longitudinal velocity correlation in the homogeneous axial direction,
CS

ww(rz), is considered for the comparison. The model is given by equation (2.8)
in figure 6(a) and by (2.3) in figure 6(b). The alternative models considered were,
firstly, when no attenuation is present in the dispersion velocity, uS

d = w′ or uT
d = w′,

and secondly, when the dispersion is attenuated by the square of the correlation
function, (uS

d )
2 =w

′2(CS
ww(rz))

2 or (uT
d )2 = w

′2(CT
ww(τ ))2. In both figures, it is seen that

the standard model does best overall, over the entire extent of the correlation.
However, there is not much difference amongst the three at small times (or for small
separation distances), where the correlations are close to unity and all three models
are nearly equivalent. As expected, the constant model, with its lack of attenuation,
underpredicts the correlation in the temporal-from-spatial case (the correlated time
is less than the actual time) and overpredicts the correlation in the spatial-from-
temporal case (the correlated displacement is more than the actual displacement).
For the second choice of the model, where the attenuation (CS

ww(rz))
2 or (CT

ww(τ ))2

is more than the model (as the correlations are less than unity), the behaviour is
opposite – the model overpredicts the temporal-from-spatial case and underpredicts
the spatial-from-temporal case. The choice of the model, (2.3) or (2.8), based on
physical arguments involving eddy correlation, seems to work best.

4. Discussion
The model results are encouraging, especially with the longitudinal correlations in

the homogeneous axial direction along the axis of symmetry (figures 3a, 4a). The
model does poorly with the transverse correlations (figure 5). The model does not do
well along the non-homogeneous directions (figures 3b, 4b).

The small eddies are embedded in the larger eddies and are swept by them. The
velocities used to calculate the spatial or temporal correlation functions are obtained
at fixed points, and would be subject to sweeping by the large eddies. Thus the
velocities obtained in the model (equations (2.3) and (2.7)) also include the sweeping
effects, and thus the sweeping effect is incorporated in the model.
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To apply the model with a mean flow, we need to assume local axisymmetry of
the fluctuations along the mean flow direction (which is a reasonable assumption, as
shown in George & Hussein 1991). The eddy decorrelation occurs because of both
the mean convection and the turbulence evolution. Thus we need to augment the
mean convection velocity with the sampled RMS velocity (2.3) when calculating the
spatial separations from temporal separations.

The validity of the model can be tested using results from DNS studies.
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